3.12.98 \(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx\) [1198]

3.12.98.1 Optimal result
3.12.98.2 Mathematica [C] (verified)
3.12.98.3 Rubi [A] (verified)
3.12.98.4 Maple [B] (verified)
3.12.98.5 Fricas [C] (verification not implemented)
3.12.98.6 Sympy [F(-1)]
3.12.98.7 Maxima [F(-1)]
3.12.98.8 Giac [F]
3.12.98.9 Mupad [F(-1)]

3.12.98.1 Optimal result

Integrand size = 35, antiderivative size = 259 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {(49 A-C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{10 a^3 d}-\frac {(13 A-C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{6 a^3 d}+\frac {(49 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 a^3 d}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {2 (4 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(13 A-C) \sqrt {\sec (c+d x)} \sin (c+d x)}{6 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
1/10*(49*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^3/d-1/5*(A+C)*sin(d*x+c)*sec(d 
*x+c)^(1/2)/d/(a+a*cos(d*x+c))^3-2/15*(4*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/ 
a/d/(a+a*cos(d*x+c))^2-1/6*(13*A-C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a^3+a^3 
*cos(d*x+c))-1/10*(49*A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c) 
*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a 
^3/d-1/6*(13*A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic 
F(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/d
 
3.12.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.94 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.39 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (-i (49 A-C) e^{-2 i (c+d x)} \left (1+e^{i (c+d x)}\right )^5 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+160 (13 A-C) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )-i \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 i (642 A-18 C+2 (541 A-4 C) \cos (c+d x)+18 (29 A-C) \cos (2 (c+d x))+106 A \cos (3 (c+d x))-4 C \cos (3 (c+d x))+161 i A \sin (c+d x)+i C \sin (c+d x)+148 i A \sin (2 (c+d x))+8 i C \sin (2 (c+d x))+41 i A \sin (3 (c+d x))+i C \sin (3 (c+d x)))\right ) \left (\cos \left (\frac {1}{2} (c+3 d x)\right )+i \sin \left (\frac {1}{2} (c+3 d x)\right )\right )}{120 a^3 d (1+\cos (c+d x))^3} \]

input
Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + a*Cos[c + d*x]) 
^3,x]
 
output
-1/120*(Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(((-I)*(49*A - C)*(1 + E^(I*(c 
 + d*x)))^5*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, 
 -E^((2*I)*(c + d*x))])/E^((2*I)*(c + d*x)) + 160*(13*A - C)*Cos[(c + d*x) 
/2]^5*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*(Cos[(c + d*x)/2] - I*S 
in[(c + d*x)/2]) + (2*I)*(642*A - 18*C + 2*(541*A - 4*C)*Cos[c + d*x] + 18 
*(29*A - C)*Cos[2*(c + d*x)] + 106*A*Cos[3*(c + d*x)] - 4*C*Cos[3*(c + d*x 
)] + (161*I)*A*Sin[c + d*x] + I*C*Sin[c + d*x] + (148*I)*A*Sin[2*(c + d*x) 
] + (8*I)*C*Sin[2*(c + d*x)] + (41*I)*A*Sin[3*(c + d*x)] + I*C*Sin[3*(c + 
d*x)]))*(Cos[(c + 3*d*x)/2] + I*Sin[(c + 3*d*x)/2]))/(a^3*d*E^(I*d*x)*(1 + 
 Cos[c + d*x])^3)
 
3.12.98.3 Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 246, normalized size of antiderivative = 0.95, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.486, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (c+d x)^{3/2} \left (A+C \cos (c+d x)^2\right )}{(a \cos (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (11 A+C)-5 a (A-C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (11 A+C)-5 a (A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (11 A+C)-5 a (A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3457

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {a^2 (41 A+C)-6 a^2 (4 A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {a^2 (41 A+C)-6 a^2 (4 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3457

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {\int \frac {3 a^3 (49 A-C)-5 a^3 (13 A-C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {\int \frac {3 a^3 (49 A-C)-5 a^3 (13 A-C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {\int \frac {3 a^3 (49 A-C)-5 a^3 (13 A-C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-5 a^3 (13 A-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-5 a^3 (13 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-5 a^3 (13 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-5 a^3 (13 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-5 a^3 (13 A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {3 a^3 (49 A-C) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {10 a^3 (13 A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {5 a^2 (13 A-C) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {4 a (4 A-C) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A+C) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\right )\)

input
Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(3/2))/(a + a*Cos[c + d*x])^3,x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/5*((A + C)*Sin[c + d*x])/(d*Sqrt 
[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3) + ((-4*a*(4*A - C)*Sin[c + d*x])/(3 
*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2) + ((-5*a^2*(13*A - C)*Sin[c 
+ d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])) + ((-10*a^3*(13*A - C) 
*EllipticF[(c + d*x)/2, 2])/d + 3*a^3*(49*A - C)*((-2*EllipticE[(c + d*x)/ 
2, 2])/d + (2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/(2*a^2))/(3*a^2))/(10 
*a^2))
 

3.12.98.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
3.12.98.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(684\) vs. \(2(283)=566\).

Time = 2.51 (sec) , antiderivative size = 685, normalized size of antiderivative = 2.64

method result size
default \(\text {Expression too large to display}\) \(685\)

input
int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x,method=_RETUR 
NVERBOSE)
 
output
-1/60*(-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(65*A*EllipticF(cos(1/2 
*d*x+1/2*c),2^(1/2))-147*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)) 
)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+4*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/ 
2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(65*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*A*EllipticE(cos 
(1/2*d*x+1/2*c),2^(1/2))-5*C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*Ell 
ipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c 
)-2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(65*A*EllipticF(cos(1/2*d*x+1 
/2*c),2^(1/2))-147*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-5*C*EllipticF(c 
os(1/2*d*x+1/2*c),2^(1/2))+3*C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos( 
1/2*d*x+1/2*c)+12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(49 
*A-C)*sin(1/2*d*x+1/2*c)^8-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(817*A-13*C)*sin(1/2*d*x+1/2*c)^6+12*(-2*sin(1/2*d*x+1/2*c)^4+sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(124*A-C)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(439*A-C)*sin(1/2*d*x+1/2*c)^2)/a^3/cos( 
1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin( 
1/2*d*x+1/2*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.12.98.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 479, normalized size of antiderivative = 1.85 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=-\frac {5 \, {\left (\sqrt {2} {\left (-13 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-13 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-13 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-13 i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (\sqrt {2} {\left (13 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (13 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (13 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (13 i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (49 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (49 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (49 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (49 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-49 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-49 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-49 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-49 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, {\left (49 \, A - C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (94 \, A - C\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (59 \, A + C\right )} \cos \left (d x + c\right ) + 60 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algori 
thm="fricas")
 
output
-1/60*(5*(sqrt(2)*(-13*I*A + I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-13*I*A + I* 
C)*cos(d*x + c)^2 + 3*sqrt(2)*(-13*I*A + I*C)*cos(d*x + c) + sqrt(2)*(-13* 
I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5* 
(sqrt(2)*(13*I*A - I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(13*I*A - I*C)*cos(d*x 
+ c)^2 + 3*sqrt(2)*(13*I*A - I*C)*cos(d*x + c) + sqrt(2)*(13*I*A - I*C))*w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(49* 
I*A - I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(49*I*A - I*C)*cos(d*x + c)^2 + 3*sq 
rt(2)*(49*I*A - I*C)*cos(d*x + c) + sqrt(2)*(49*I*A - I*C))*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(s 
qrt(2)*(-49*I*A + I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-49*I*A + I*C)*cos(d*x 
+ c)^2 + 3*sqrt(2)*(-49*I*A + I*C)*cos(d*x + c) + sqrt(2)*(-49*I*A + I*C)) 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c))) - 2*(3*(49*A - C)*cos(d*x + c)^3 + 4*(94*A - C)*cos(d*x + c)^2 + 
5*(59*A + C)*cos(d*x + c) + 60*A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d* 
cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.12.98.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**3,x)
 
output
Timed out
 
3.12.98.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algori 
thm="maxima")
 
output
Timed out
 
3.12.98.8 Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^3,x, algori 
thm="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^3 
, x)
 
3.12.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^3 
,x)
 
output
int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(3/2))/(a + a*cos(c + d*x))^3 
, x)